Ends in
00
days
00
hrs
00
mins
00
secs
ENROLL NOW

▶️ Video Course Sale - Get Video Courses as LOW as $6.99 USD each only!

amazon sagemaker

Home » amazon sagemaker

Amazon Sagemaker Model Registry Cheat Sheet

2026-01-23T03:30:10+00:00

Bookmarks Core Concepts Features Implementation Integration Best Practices Pricing    A dedicated, fully-managed metadata store and governance hub within Amazon SageMaker designed to catalog, version, track, audit, and deploy machine learning (ML) models throughout their entire lifecycle. It serves as the single source of truth for model inventory, lineage, and approval states, enabling collaboration between data scientists, ML engineers, and governance teams while enforcing consistency and compliance in model deployment workflows. Amazon SageMaker Model Registry Core Concepts Model Package Group A logical container that organizes all iterations of a single model solving [...]

Amazon Sagemaker Model Registry Cheat Sheet2026-01-23T03:30:10+00:00

Amazon SageMaker Model Monitor Cheat Sheet

2026-01-12T09:02:21+00:00

Bookmarks Features How It Works Implementation Use Cases Integration Best Practices Pricing    A fully-managed, automated service within Amazon SageMaker that continuously monitors the quality of machine learning (ML) models in production. It automatically detects data drift and model performance decay, sending alerts so you can maintain model accuracy over time without building custom monitoring tools. Features Automated Data Capture & Collection Configures your SageMaker endpoints to capture a specified percentage of incoming inference requests and model predictions. This data, enriched with metadata (timestamp, endpoint name), is automatically stored in your [...]

Amazon SageMaker Model Monitor Cheat Sheet2026-01-12T09:02:21+00:00

Amazon Sagemaker Jumpstart Cheat Sheet

2026-01-12T07:23:56+00:00

Bookmarks Features How It Works Implementation Use Cases Integration Best Practices Pricing    A centralized machine learning hub within Amazon SageMaker AI designed to drastically reduce the time and expertise required to build, train, and deploy models. It provides instant access to a curated catalog of production-ready assets.   Features Foundation Models Hub Access a broad selection of state-of-the-art foundation models from providers like AI21 Labs, Cohere, Meta, Mistral AI, and Stability AI, alongside hundreds of open-source models from Hugging Face. You can evaluate, compare, and perform tasks like text summarization, [...]

Amazon Sagemaker Jumpstart Cheat Sheet2026-01-12T07:23:56+00:00

Amazon Sagemaker Ground Truth Cheat Sheet

2026-01-07T05:39:07+00:00

Bookmarks Features How It Works Implementation Use Cases Integration Best Practices Pricing    A fully managed data labeling service that uses a combination of human workers and machine learning to build high-quality datasets for training machine learning models. It provides built-in workflows, multiple workforce options, and automated labeling to reduce cost and time.   Features Automated Data Labeling (Active Learning) Uses a machine learning model to pre-label datasets and continuously learns from human feedback. It sends only low-confidence data to human reviewers, reducing labeling costs by up to 70% compared to [...]

Amazon Sagemaker Ground Truth Cheat Sheet2026-01-07T05:39:07+00:00

Mastering Cloud-Based Semantic Search: Advanced Cloud Search Architectures Made Easy

2025-10-28T18:05:37+00:00

In today's AI-driven world, finding information based on meaning and context rather than exact keywords has become crucial. Good thing we now have vector search, enabling semantic search, personalized recommendations, image similarity, and more. However, building and managing vector search infrastructure can be complex. Fortunately, AWS offers zero-infrastructure managed services that let you implement powerful vector search capabilities without worrying about servers, scaling, or maintenance. Let's walk through creating a simple yet effective vector search demo using AWS services within the Free Tier so you can follow along without incurring costs. What is Vector Search? Vector search is a groundbreaking [...]

Mastering Cloud-Based Semantic Search: Advanced Cloud Search Architectures Made Easy2025-10-28T18:05:37+00:00

Amazon SageMaker Clarify

2025-12-12T05:19:31+00:00

Bookmarks Key Capabilities Core Components Configuration Components Bias Metrics Overview SHAP Explainability Validate Your Knowledge Amazon SageMaker Clarify Cheat Sheet Amazon SageMaker Clarify is a SageMaker AI feature for detecting bias and explaining model predictions. Supports both pre-training and post-training bias analysis. Provides feature attribution to explain how input features influence predictions. Can monitor deployed models for bias drift and feature attribution drift over time. Key Capabilities Bias Detection Pre-training bias: Analyzes datasets before model training. Post-training bias: Evaluates model predictions for fairness across facets. Supports binary, multiclass, and regression tasks. Interpreting [...]

Amazon SageMaker Clarify2025-12-12T05:19:31+00:00

Retrieval-Augmented Generation (RAG) for Foundation Model Customization

2024-12-02T06:01:45+00:00

Artificial Intelligence (AI) has rapidly advanced, pushing the limits of what machines can accomplish. However, one significant challenge remains: ensuring that AI responses are both accurate and contextually relevant while being up-to-date. This is where Retrieval-Augmented Generation (RAG) comes in—a cutting-edge approach that integrates the capabilities of data retrieval with advanced AI generation techniques. In this blog, we will explore the details of RAG, discussing its benefits, applications, and how to implement it using AWS. Understanding Retrieval-Augmented Generation (RAG) RAG (Retrieval-Augmented Generation) incorporates real-time data retrieval into the generative process. Unlike traditional models that depend solely on pre-trained data, RAG [...]

Retrieval-Augmented Generation (RAG) for Foundation Model Customization2024-12-02T06:01:45+00:00

AWS Glue DataBrew

2026-01-07T16:46:55+00:00

Bookmarks Features Components Pricing References AWS Glue DataBrew Cheat Sheet AWS Glue DataBrew is a tool designed to streamline your data analysis process. It allows you to interact with your data directly, eliminating the need for complex coding. With its extensive library of over 250 pre-built transformations, you can easily clean, normalize, and format your data, preparing it for insightful analysis. Supports data quality rules and PII detection, enabling validation and masking of sensitive data during data preparation. Integrates natively with Amazon AppFlow to ingest data from SaaS applications such as Salesforce, Zendesk, [...]

AWS Glue DataBrew2026-01-07T16:46:55+00:00

Distributed Data Parallel Training with TensorFlow and Amazon SageMaker Distributed Training Library

2024-01-22T00:58:08+00:00

Introduction In the realm of machine learning, the ability to train models effectively and efficiently stands as a cornerstone of success. As datasets grow exponentially and models become more complex, traditional single-node training methods increasingly fall short. This is where distributed training enters the picture, offering a scalable solution to this growing challenge. Distributed Training Overview Distributed training is a technique used to train machine learning models on large datasets more efficiently. By splitting the workload across multiple compute nodes, it significantly reduces training time. There are two main strategies in distributed training: data parallelism, where the dataset is partitioned [...]

Distributed Data Parallel Training with TensorFlow and Amazon SageMaker Distributed Training Library2024-01-22T00:58:08+00:00

Securing Machine Learning Pipelines: Best Practices in Amazon SageMaker

2024-01-17T00:45:41+00:00

Introduction In today's digital era, the importance of security in machine learning (ML) pipelines cannot be overstated. As ML systems increasingly become integral to business operations and decision-making, ensuring the integrity and security of these systems is paramount. A breach or a flaw in an ML pipeline can lead to compromised data, erroneous decision-making, and potentially catastrophic consequences for businesses and individuals alike. This section will delve into why securing ML pipelines is crucial, highlighting the potential risks and impacts of security lapses. Short Introduction to Amazon SageMaker Amazon SageMaker is a fully managed service that provides every developer and [...]

Securing Machine Learning Pipelines: Best Practices in Amazon SageMaker2024-01-17T00:45:41+00:00

AWS, Azure, and GCP Certifications are consistently among the top-paying IT certifications in the world, considering that most companies have now shifted to the cloud. Upskill and earn over $150,000 per year with an AWS, Azure, or GCP certification!

Follow us on LinkedIn, Facebook, or join our Slack study group. More importantly, answer as many practice exams as you can to help increase your chances of passing your certification exams on your first try!